Copula Processes

نویسندگان

  • Andrew Gordon Wilson
  • Zoubin Ghahramani
چکیده

We define a copula process which describes the dependencies between arbitrarily many random variables independently of their marginal distributions. As an example, we develop a stochastic volatility model, Gaussian Copula Process Volatility (GCPV), to predict the latent standard deviations of a sequence of random variables. To make predictions we use Bayesian inference, with the Laplace approximation, and with Markov chain Monte Carlo as an alternative. We find our model can outperform GARCH on simulated and financial data. And unlike GARCH, GCPV can easily handle missing data, incorporate covariates other than time, and model a rich class of covariance structures. Imagine measuring the distance of a rocket as it leaves Earth, and wanting to know how these measurements correlate with one another. How much does the value of the measurement at fifteen minutes depend on the measurement at five minutes? Once we’ve learned this correlation structure, suppose we want to compare it to the dependence between measurements of the rocket’s velocity. To do this, it is convenient to separate dependence from the marginal distributions of our measurements. At any given time, a rocket’s distance from Earth could have a Gamma distribution, while its velocity could have a Gaussian distribution. And separating dependence from marginal distributions is precisely what a copula function does. While copulas have recently become popular, especially in financial applications [1, 2], as Nelsen [3] writes, “the study of copulas and the role they play in probability, statistics, and stochastic processes is a subject still in its infancy. There are many open problems. . . ” Typically only bivariate (and recently trivariate) copulas are being used and studied. In our introductory example, we are interested in learning the correlations in different stochastic processes, and comparing them. It would therefore be useful to have a copula process, which can describe the dependencies between arbitrarily many random variables independently of their marginal distributions. We define such a process. And as an example, we develop a stochastic volatility model, Gaussian Copula Process Volatility (GCPV). In doing so, we provide a Bayesian framework for the learning the marginal distributions and dependency structure of what we call a Gaussian copula process. The volatility of a random variable is its standard deviation. Stochastic volatility models are used to predict the volatilities of a heteroscedastic sequence – a sequence of random variables with different variances, like distance measurements of a rocket as it leaves the Earth. As the rocket gets further away, the variance on the measurements increases. Heteroscedasticity is especially important in econometrics; the returns on equity indices, like the S&P 500, or on currency exchanges, are heteroscedastic. Indeed, in 2003, Robert Engle won the Nobel Prize in economics “for methods of analyzing economic time series with time-varying volatility”. GARCH [4], a generalized version of Engle’s ARCH, is arguably unsurpassed for predicting the volatility of returns on equity indices and currency exchanges [5, 6, 7]. GCPV can outperform GARCH, and is competitive on financial data that especially suits GARCH [8, 9, 10]. Before discussing GCPV, we first introduce copulas and the copula process. For a review of Gaussian processes, see Rasmussen and Williams [11]. ∗http://mlg.eng.cam.ac.uk/andrew †Also at the machine learning department at Carnegie Mellon University.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Dependency Structure of Default Processes Based on Bayesian Copula

One of the main problems in credit risk management is the correlated default. In large portfolios, computing the default dependencies among issuers is an essential part in quantifying the portfolio's credit. The most important problems related to credit risk management are understanding the complex dependence structure of the associated variables and lacking the data. This paper aims at introdu...

متن کامل

The Impact of Oil and Gold Prices’ Shock on Tehran Stock Exchange: A Copula Approach

There are several researches that deal with the behavior of SEs and their relationships with different economical factors. These range from papers dealing with this subject through econometrical procedures to statistical methods known as copula. This article considers the impact of oil and gold price on Tehran Stock Exchange market (TSE). Oil and gold are two factors that are essential for the ...

متن کامل

Dependence Structure in Levy Processes and Its Application in Finance

Title of dissertation: DEPENDENCE STRUCTURE IN LEVY PROCESSES AND ITS APPLICATION IN FINANCE Qiwen Chen, Doctor of Philosophy, 2008 Dissertation directed by: Professor Dilip B. Madan Department of Finance In this paper, we introduce DSPMD, discretely sampled process with prespecified marginals and pre-specified dependence, and SRLMD, series representation for Levy process with pre-specified mar...

متن کامل

Transductive Learning for Multi-Task Copula Processes

We tackle the problem of multi-task learning with copula process. Multivariable prediction in spatial and spatialtemporal processes such as natural resource estimation and pollution monitoring have been typically addressed using techniques based on Gaussian processes and co-Kriging. While the Gaussian prior assumption is convenient from analytical and computational perspectives, nature is domin...

متن کامل

Title of dissertation : EXTENDING THE LÉVY PROCESSES TO MULTIASSET PRODUCTS PRICING

Title of dissertation: EXTENDING THE LÉVY PROCESSES TO MULTIASSET PRODUCTS PRICING Qing Xia, Doctor of Philosophy, 2006 Dissertation directed by: Professor Dilip B. Madan Department of Finance Lévy processes have gained great success in pricing single asset options. In this thesis, we introduce a methodology enabling us to extend the single asset pricing technique based on Lévy processes to mul...

متن کامل

Kernel - based Copula Processes by Eddie K . H . Ng A thesis submitted in conformity

Kernel-based Copula Processes Eddie K. H. Ng Doctor of Philosophy Graduate Department of Electrical & Computer Engineering University of Toronto 2010 The field of time-series analysis has made important contributions to a wide spectrum of applications such as tide-level studies in hydrology, natural resource prospecting in geo-statistics, speech recognition, weather forecasting, financial tradi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010